Selasa, 20 Januari 2015

Naked Eye Observations (“ Astronomy Principles and Practice”)

By : A E Roy and D Clarce
From The Book “ Astronomy Principles and Practice”
1.1 Introduction
The etymology of the word ‘Astronomy’ implies that it was the discipline involved in ‘the arranging of the stars’. Today we might say that astronomy is our attempt to study and understand celestial phenomena, part of the never-ending urge to discover order in nature. We do not know who were the first astronomers—what we do know is that the science of astronomy was well advanced in parts of Europe by the middle of the third millennium BC and that the Chinese people had astronomical schools as early as 2000 BC. In all ages, from the burgeoning of man’s intelligence, there have been people fascinated by the heavens and their changing aspect and these people, as far as their cultural environment has allowed them, have tried to formulate cosmologies. We are no different today.
Nowadays, the word ‘Astrophysics’ is also used to describe the study of the celestial bodies. In fact, many astronomers use both terms quite generally and it is not infrequent to find Departments of Astronomy and Astrophysics within educational establishments. The question may well be asked ‘What is the difference between Astronomy and Astrophysics?’ Very loosely, Astronomy might be defined as the subject of the ‘where and when’ related to the description of a celestial body with th ‘why and how’ being covered more by Astrophysics. Rather than trying to provide a hard and fast rule for the terminology, we will simply use Astronomy to cover all aspects of the description of the skies and the Universe.
If our current theories of the Universe are nearer the truth, it is probably not that our intelligence has increased in the past six millennia. It is more likely that the main factor has been the discovery and development of the ‘scientific method’, which has led to our present civilization based on the flood of technological advantages provided by this method. This has enabled scientists in far greater numbers than ever before to devote their lives to the study of the heavens, assisted by telescopes, computers, space vehicles and a multitude of other equipment. Their attempts to interpret and understand the wealth of new information provided by these new instruments have been aided by allied sciences such as physics, chemistry, geology, mathematics and so on.
We must remember, however, that for more than nine-tenths of the last five thousand years ofour study of the heavens, we have had to rely on the unaided eye. The Mediterranean people whoset the constellations in the sky, the Babylonians, Egyptians and Greeks, the Arabian astronomers who flourished during the Dark Ages of Post-Roman Europe, the Chinese, the Mayan and other early American astronomers, all built their theories of the Universe on naked eye observations. And so we begin by following in their footsteps and seeing what they saw as they observed over a few minutes (see section 1.2), over a few hours (see section 1.3), over a month (see section 1.4) or over at least a year (see section 1.5). In this way, we will find it easier to understand why their cosmological theories were formulated in their particular ways.
1.2 Instantaneous phenomena
1.2.1 Day
During the day a variety of phenomena may be seen. In a particular direction lies the Sun, so bright it is impossible (and dangerous) to look directly at it. In general, the sky background is blue. The Moon may also be visible, having a distinct shape though certainly not circular. If the Sun has just set or if dawn is not far away, there is sufficient daylight to see clearly. We call this condition twilight.
On the horizon opposite to the twilight glow, a dark purple band is sometimes seen. This area corresponds to a zone on the sky which is cut off from the direct sunlight by the Earth and is receiving very little light by scattering from the atoms and molecules in the atmosphere. It corresponds, in fact, to the shadow of the Earth in the sky. Its presence tells us of the extreme purity and low humidity of the local atmosphere. Needless to say, it is very rarely seen in Britain.
To the ancients, clouds, wind, rain, hail and other atmospheric phenomena were inadequately distinguished from what we term celestial events. Our civilization includes them in meteorology, a science quite distinct from astronomy, so that we need not consider them further, except to remark that astronomers’ observations have, until recently, been dependent entirely upon good weather conditions being available. With the development of radio telescopes and the fact that other equipment can be placed in artificial satellites and operated above the Earth’s atmosphere, this dependence is no longer complete.
1.2.2 Night
If seeing conditions are favourable, a view of the night sky provides a far wider variety of celestial phenomena. If the Moon is visible, its brightness will dominate that of all other objects. Its shape will be crescent or gibbous or even circular. At the last condition, its apparent diameter is very close to that of the Sun. To anyone with reasonable eyesight, its surface will not be evenly bright. Areas darker than their surroundings will be noticed, so that the fancy of primitive man could see a ‘Man in the Moon’, a ‘Beautiful Lady’ or a ‘Rabbit’, sketched out by these features.
In addition to the Moon, some two to three thousand tiny, twinkling points of light—the stars—are seen, ranging in brightness from ones easily visible just after sunset to ones just visible when the Moon is below the horizon and the sky background is darkest. Careful comparison of one bright star with another shows that stars have different colours; for example, in the star pattern of Orion, one of the many constellations, Betelgeuse is a red star in contrast to the blue of Rigel. The apparent distribution of stars across the vault of heaven seems random.
With the eyes becoming accustomed to the darkness, a faint band of light, the MilkyWay, catches the observer’s attention. Modern astronomers, with the aid of telescopes, know that this luminous region stretching from horizon to horizon across the sky in a great circle is made up of a myriad of stars too faint to be resolved with the naked eye. To the ancient observer, its presence inspired all kinds of speculations, none of them verifiable.
One or two of the tiny points of light may draw a closer scrutiny. They shine steadily, in contrast to the twinkling of the stars and they are among the brightest of the star-like objects. There must be some reason why they are different. If our observer is going to watch for a few hours, attention will be returned to these objects.



1.3 A few hours
1.3.1 Day
The heavens are never static. The slowly-moving shadow cast by an upright rod or a boulder or tree reveals the Sun’s movement across the sky. If observation is kept up throughout the day, the Sun is seen to rise above the eastern horizon, climb up the sky in a circle inclined at some angle to the plane defined by the horizon and culminate, i.e. reach a maximum altitude above the line joining the north to the south points, then descend in a mirror image of its forenoon path to set on the western horizon. If the Moon is seen during that day, it will appear to imitate the Sun’s behaviour in rising and setting.
1.3.2 Night
As darkness falls, the first stars become visible above the eastern horizon. With the ending of twilight the fainter stars can be seen and, as the hours pass, the stellar groups rise from the eastern horizon, reach their maximum altitude like the Sun, then set or become dim and invisible as daylight returns. The impression of being on a flat plane surmounted by a dark revolving bowl to which the stars are attached is strong, especially when it is seen that there are many stars in a particular region of the sky that revolve, never rising, never setting, about a hub or pivot. These stars are said to be circumpolar. It is then clear that those other stars that rise and set do so simply because their circular paths about this pole are so big that they intersect the horizon.
The Moon also revolves across this upturned bowl. Although theMoon appears to have an angular motion across the sky similar to that of the stars, careful observation over a few hours reveals that it moves slightly eastwards relative to the star background.

Occasionally a bright object, called a meteor, shoots across the sky in a second, looking like a fast-moving or ‘falling star’. It may be too that faintly luminous sheets are seen, hanging down the bowl of the heavens like great curtains. These are the aurorae (W 1.1).
The change in length of a shadow according to the time of day and the time of year.
If our observer is watching at any time after October 4, 1957, it is quite likely that one or more faint specks of light will be seen to cross the sky, taking a few minutes to do so, their presence giving reminder that man-made satellites are now in orbit about the Earth. Indeed, one of the latest satellites— the International Space Station (W 1.2) —is exceedingly bright—as bright as the brightest planet Venus— and bears testament to the continual development of manned orbiting laboratories.
1.4 A month
The month is the next period of any significance to our watcher. During this time, the ideas about the heavens and their movements change. It will be noted that after a few nights the first group of stars seen above the eastern horizon just after sunset is markedly higher at first sight, with other groups under it becoming the first stars to appear. Indeed, after a month, the first group is about thirty degrees above the eastern horizon when the first stars are seen after sunset. It is then apparent that the Sun must shift its position against the stellar background as time passes. The rate is slow (about one degree per day—or about two apparent solar diameters) compared with its daily, or diurnal, movement about the Earth.
The Moon’s sidereal path crosses the ecliptic twice each month at an angle of about 5◦. For successive lunations the crossing points move westward, covering about 20◦ over a year. The Constellation of Leo is shown to give an indication of the scale of the movement.
The Sun is not the only object to move independently of the stellar patterns. A few nights’ observations of the Moon’s position against the stars (its sidereal position) show that it too moves but at a much faster rate, about thirteen degrees per day, so that it is seen to make one complete revolution of the stellar background in twenty-seven and one-third days, returning to the same constellation it occupied at the beginning of the month. In addition, its shape changes. From a thin crescent, like a reversed ‘C’, seen in the west just after sunset, it progresses to the phase we call first quarter about seven days later. At this phase, the Moon’s terminator is seen to be almost a straight line. Fourteen days after new moon, it is full and at its brightest, appearing at its highest in the sky about midnight. Seven days later it has dwindled to third quarter and rises before the Sun, a pale thin crescent once more, a mirror image of its phase just after new moon. Twenty-nine and one-half days after new moon, it is new once more.
It was a fairly easy matter for the ancients to ascertain that theMoon was nearer the Earth than the stars. Frequently the Moon was seen to blot out a star, occulting it until it reappeared at the other edge of the Moon’s disc. And occasionally the Moon was eclipsed, the Earth progressively blocking off the sunlight until the satellite’s brightness had diminished to a dull, coppery hue. An even more alarming, but rarer, occurrence took place at times during daylight: the Moon revealed its unseen presence near the Sun by eclipsing the solar disc, turning day into night, causing birds to seek their nests and creating superstitious fear in the mind of primitive man.
The observer who studies the night sky for a month or so also discovers something new about the one or two star-like objects noted that do not twinkle. Careful marking of their positions with respect to neighbouring stars shows that they too are moving against the stellar background. There does not seem to be much system, however, about these movements. In the course of a month, one may move in the direction the Moon travels in, while a second object, in another part of the sky, may move in the opposite direction. Indeed, towards the end of this month’s observing sessions, either object may cease to move, seem almost to change its mind and begin to retrace its steps on the celestial sphere. These wanderers, or planets (‘planet’ is a Greek word meaning ‘wanderer’), are obviously of a different nature from that of the fixed, twinkling stars.
1.5 A year
A year’s patient observing, by day and night, provides the watcher with new concepts. For example, the Sun’s daily behaviour, moving easterly bit by bit, is linked to the seasonal changes.
Each day, for most observers, the Sun rises, increases altitude until it culminates on the meridian at apparent noon, then falls down the sky until it sets on the western horizon. We have seen that this progress can be studied by noting the changes in direction and length of the shadow cast by a vertical rod stuck in the ground (see figure 1.1).
As the days pass, the minimum daily length of shadow (at apparent noon) is seen to change, becoming longest during winter and shortest during summer. This behaviour is also linked with changes in the rising and setting directions of the Sun. Six months after the Sun has risen between north and east and setting between north and west, it is rising between south and east and setting between south and west. Another six months has to pass before the solar cycle is completed, with the Sun once more rising between north and east and setting between north and west.
All this could be explained by supposing that the Sun not only revolved with the stars on the celestial sphere about the Earth in one day (its diurnal movement) but that it also moved much more slowly along the path among the stars on the celestial sphere, making one revolution in one year, returning to its original position with respect to the stars in that period of time. We have already seen that the observer who notes over a month what group of stars is first visible above the eastern horizon after sunset will have already come to the conclusion that the Sun moves relative to the stars. Now it is seen that there is a regular secular progression right round the stellar background and that when the Sun has returned to its original stellar position, the seasonal cycle is also completed.
The Sun’s stellar route was called the ecliptic by the ancients. The groups of stars intersected by this path were called the houses of the Zodiac. The ecliptic is found to be a great circle inclined at about 231/2 degrees to the equator, the great circle on the sky corresponding to the projection of the Earth’s equator, intersecting it at two points, the vernal and autumnal equinoxes, 180 degrees apart.
It was quite natural, then, for the ancients to worship the Sun. Not only did it provide light and warmth by day against the evils of the night but, in addition, its yearly progression was intimately linked to the seasons and so also to seed time and harvest. It was, therefore, necessary to keep track of progress to use it as a clock and a calendar. To this end, the science of sundial-making began, ramifying from simple obelisks that throw shadows on a fan of lines radiating from their bases, to extremely ingenious and complicated erections in stone and metal. Up to the 19th century, these constructions rivalled most pocket-watches in accuracy as timekeepers.
For calendrical purposes, lines of standing stones could be set up, pointing to the midsummer, midwinter and equinoctial rising and setting points of the Sun. In the British Isles, there still remain hundreds of such solar observatories, witnesses to our forefathers’ preoccupation with the Sun-god.
The observer who watches the night sky throughout a year counts about thirteen revolutions of the stellar background by theMoon in that time. Over that period of time, it is not apparent that any simple relationship exists between the sidereal period of revolution of the Moon, the period of its phases and the year (the time it takes the Sun to perform one complete circuit of the ecliptic). That knowledge comes after much more extended observation, certainly measured in decades.
It would be noticed, however, that the Moon’s sidereal path is very little inclined to the ecliptic (about five degrees) and if records were kept of the points of the ecliptic crossed by the Moon, it might be realized that these points were slipping westwards at a rate of about twenty degrees per year (see figure 1.2).
More information, too, would be acquired about the star-like objects that do not twinkle and which have been found in the course of a month to have a slow movement with respect to the stellar background. These planets, like the Moon, would never be seen more than a few degrees from the plane of the ecliptic, yet month after month they would journey through constellation after constellation. In the case of one or two, their pathswould include narrowloops, though only one loop would be observed for each of these planets in the course of the year.
The year’s observations would not add much to the observer’s knowledge of the stars, except to confirm that their positions and brightnesses relative to each other did not alter and that each star, unlike the Sun, had its own fixed rising and setting direction, unless it was circumpolar. It is possible, however, that in a year, the extra-careful watcher might have cause to wonder if the conclusions about stars were without exception for, by regular comparison of the brightness of one star with respect to that of neighbouring ones, it might be discovered that a few stars were variable in brightness. This was certainly known to the Arabian astronomers of the Middle Ages. The appearance of a nova might even be observed, i.e. a star appearing in a position where one had not been previously noted. This occurrence might well lead to doubt about the knowledge of the now familiar constellations—in any event it could bring about the decision to make a star map for future use if the phenomenon happened again. It is also possible that in the course of a year the observer might see a comet, a star-like object with a long luminous tail. The development of the tail and the movement of the comet head could be detected from night to night.
Our observer by now must have come to tentative conclusions concerning the heavenly phenomena studied and noted. The interpretations, and the use made of the world-picture, will be constrained by the culture of the time. A man of Neolithic times and a Greek of Athens’ golden era would develop entirely different cosmologies from identical observations. And a hunter or farmer has different needs, astronomically speaking, from a sailor.
Selanjutnya>>

Tidak ada komentar:

Posting Komentar

Popular Posts